|
支持向量机在小样本模式识别领域具有优势,但其性能评估及核参数、正则化参数的选择尚未有标准算法。将受试者操作特性曲线(Receiver Operating Characteristic,ROC)引入支持向量机分类性能分析和建模参数优化问题。在核参数及正则化参数所构成的二维空间中,调整模型参数阈值描绘ROC曲线,通过比较不同分类器ROC曲线下面积实现模型的性能分析,研究了基于ROC曲线最佳工作点的模型优化问题。工程实例表明,ROC曲线下面积有效地量化了模型的识别性能,并给出了一定寻优范围内的模型参数最优点,可以在SVM模型参数优化问题中推广应用。 | |
|
共 1 个关于本帖的回复 最后回复于 2014-1-8 11:27